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This Letter describes an efficient three-step synthesis route of symmetric and asymmetric phenyl-substi-
tuted photochromic 1,2-dithienylethenes bearing unprotected functional groups (i.e., alcohols, carboxylic
acids or amines). These products can be easily obtained by typical Suzuki cross-coupling between pho-
tochromic dichlorides and commercial available boronic acids or pinacol esters.
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During the last decade, photochromic compounds based on 1,2-
dithienylethenes (DTEs) have been extensively studied1,2 for their
possible application in optoelectronics,3 optical memories,4–9

waveguides,10 photo-switches,11,12 or even in astronomical de-
vices.13,14 This is based on the fact that the reversible photorespon-
sive isomerization of these molecules turns into evident changes in
the bulk material properties (UV–vis–NIR absorption, refractive in-
dex, and redox potential).2 Moreover, DTEs offer excellent thermal
stability of both isomers, fatigue resistant character, rapid re-
sponse, and high reactivity in the solid state.2,15 By well considered
molecular design these different properties can be tailored and
optimized.

DTEs bearing phenyl groups have been of particular interest in
the last years.16–18 The aromatic substituent increases the quan-
tum yield of the ring closure reaction, and leads to very stable
structures with extended delocalized p-systems. The phenyl group
also increases the absorption coefficient of the photochromic mol-
ecule and the conversion at the photostationary state. The physical
chemical properties of the phenyl-substituted DTEs can be further
modified by suitable functionalization of the aromatic rings with
electron-donating or electron-withdrawing groups.19,20 In this
publication, we describe a fast synthesis route for symmetric and
asymmetric functionalized phenyl-substituted dithienylethenes.
The asymmetric photochromic molecules find potential applica-
tion in different fields, for instance in biological systems21,22 or to
ll rights reserved.
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obtain donor–acceptor systems. Unfortunately, the synthesis of
these asymmetric molecules is rather complex.

Another peculiarity of functionalized DTEs is the possibility of
subsequent reactions to yield self-assembled monolayers (SAMs),
polymers, or sol-gel materials, which are used to obtain devices
for optoelectronic applications. As an example, organic photochro-
mic molecules functionalized with thiols react with gold surfaces
or nanoparticles, thus giving systems, which have been proposed
as electro-optical molecular switches.23–26 Monolithic materials
to be used as optical devices can also be produced by sol–gel tech-
nology, which has been already used to produce photochromic
glasses.27–29 For both strategies, photochromic molecules with
functional groups in the para-position of the phenyl ring are pre-
ferred. Appropriate groups can be alcohols, carboxylic acids, or
amines. Except for the diamine derivative 3e, synthesis routes for
all molecules described in Figure 1 are already known in the liter-
ature.30,16,17,31 Although the development of new DTE derivatives
is still a forefront research, until now just very time consuming
and often low yielding reaction pathways are reported. To achieve
the photochromic dicarboxylic acid 3d, Irie et al. introduced a six-
step synthesis route.30 For the synthesis of dialcohol 3c, first pub-
lished by Kawai et al., protracted six-step procedures are known
with typical protection and deprotection techniques.17 Further-
more, unsymmetrical DTEs with different functionalized phenyl
rings are even more difficult to obtain.32

In this Letter we describe a high yielding and fast three-step
synthesis route33 to achieve symmetric as well as asymmetric DTEs
functionalized with phenyl derivatives such as phenyl alcohol, car-



Figure 1. Photochromic DTEs bearing functionalized phenyl rings.

Scheme 1. Reagents and conditions: (i) Br2, CHCl3, 93% (ii) n-BuLi, �78 �C, C5F8, THF (iii) Pd(PPh3)4, Na2CO3, Phenylboronic acid (a), 4-hydroxyphenylboronic acid pinacol
ester (b), 4-(hydroxymethyl)phenylboronic acid (c), 4-aminophenylboronic acid pinacol ester (d), 4-carboxyphenylboronic acid (e), DME–H2O (4:1), reflux.

Scheme 2. (iv) Pd(PPh3)4, Na2CO3, phenylboronic acid, 4-(hydroxymethyl)phenyl-
boronic acid, DME–H2O (4:1), reflux.
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boxylic acids, or amines. The general reaction (Scheme 1) consists
in (i) the bromination34 of the commercially available 2-chloro-5-
methylthiophene, (ii) the Dixon reaction35 with the octafluoro-
cyclopentene, and (iii) a Suzuki coupling with different boronic
acids or pinacol esters.

Following this procedure, 2 is used as the key intermediate;36

indeed the photochromic dichloride is a known source material
for the preparation of photochromic derivatives.37,19 Consequently,
well established recipes based on a McMurry coupling have been
already reported.38,39 However, to obtain this molecule we fol-
lowed a fast reaction pathway previously not mentioned con-
cretely in the literature.40 As only the bromine atom of 3-bromo-
5-chloro-2-methylthiophene 1 is reactive against n-butyllithium
at �78 �C, 1 can be selectively lithiated and subsequently treated
with octafluorocyclopentene to yield the desired photochromic
dichloride in a quite good yield (55%) via a twofold addition–elim-
ination sequence (Scheme 1). Without exception, the subsequent
reactions of 2, which have been so far described in the literature,
are based on lithiation followed by the treatment with different
reactive reagents to yield the corresponding carboxylic acids,37

aldehydes,37 thioethers,37 boronic acids,19 phosphines,41 or other
halogenides.37 A following Suzuki coupling of the boronic acid with
a bromobenzene derivative provided phenyl-substituted 1,2-
dithienylethenes.

In the route herewith presented, the phenyl-substituted 1,2-
dithienylethenes 3a–e (Fig. 1) are directly synthesized via typical
Suzuki cross-coupling reactions42 using commercially available
boronic acids or pinacol esters.43–47 In practice, this is a powerful
methodology for the incorporation of acidic, neutral, and weakly
basic functional groups such as acids, alcohols, or even amines at-
tached to the phenyl substituents without further protection. In
this case, we used Pd(PPh3)4 as the catalyst, which is known to cou-
ple activated heteroaryl chlorides such as 2 with phenylboronic
acids and especially with derivatives bearing unprotected func-
tional groups.48 Thus, a variety of photochromic molecules with
the desired functionalized phenyl substitutes are accessible in
remarkably high isolated yield (among 85–95%). For instance, 2
couples with 4-(hydroxymethyl)phenylboronic acid in the pres-
ence of 5 mol % Pd(PPh3)4 (DME–H2O (4:1), reflux) to give 1,2-
bis-[2-methyl-5-(p-(hydroxymethyl)phenyl)-3-thienyl] hexaflu-
orocyclopentene 3c44 in high yield (86%). Although only a few
reports can be found on the successful Suzuki coupling of arylchlo-
rides with reactants possessing unprotected amino groups49 also
the previously unknown diamine 3e is achievable in a 84% yield43.

The same reaction pathway can be conveniently applied to ob-
tain not only symmetric-substituted dithienylethenes, but also
asymmetric photochromic units. In this case, a phenylboronic acid
derivative is initially added in a molar ratio of 1:1 to dichloride 2
following the same procedure adopted for the symmetrical 1,2-
diarylethenes 3a–e. After a certain reaction time which is deter-
mined monitoring the reaction by TLC, the second derivative is
introduced. For example, by using phenylboronic acid as the first
derivative (iv) (Scheme 2), and 4-(hydroxymethyl)- phenylboronic
acid as the second (v), we were able to obtain 3f.50 If compared to
3a–e the yield is slightly decreased to 60% because of symmetric
by-products we were not able to prevent completely. The stoichi-
ometric ratio between reactants was varied to determine its effect
on reaction yield. An excess of 30 mol % of dichloride 2 results in an
increase of 5% of yield, thus indicating that changes in the stoichi-
ometry slightly affect the conversion.

This concept should be easily transferred to numerous different
phenyl-substituted photochromic molecules with mixed function-
alization, and it offers a fast possibility to tune the optical proper-
ties of DTEs or to introduce single groups for further reactions.

In conclusion, we have accomplished an efficient three-step
synthesis route of symmetric and asymmetric phenyl- substituted
photochromic 1,2-dithienylethenes bearing unprotected functional
groups such as alcohols, carboxylic acids, or amines. Starting from
the versatile intermediate 2, these products can be easily obtained
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by typical Suzuki cross-coupling. The results presented here offer
the possibility to obtain a number of different 1,2-diarylethenes
compounds in a very fast and high yielding process.
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